Segmentation of High Angular Resolution Diffusion MRI Modeled as a Field of von Mises-Fisher Mixtures
نویسندگان
چکیده
High angular resolution diffusion imaging (HARDI) permits the computation of water molecule displacement probabilities over a sphere of possible displacement directions. This probability is often referred to as the orientation distribution function (ODF). In this paper we present a novel model for the diffusion ODF namely, a mixture of von Mises-Fisher (vMF) distributions. Our model is compact in that it requires very few variables to model complicated ODF geometries which occur specifically in the presence of heterogeneous nerve fiber orientation. We also present a Riemannian geometric framework for computing intrinsic distances, in closed-form, and performing interpolation between ODFs represented by vMF mixtures. As an example, we apply the intrinsic distance within a hidden Markov measure field segmentation scheme. We present results of this segmentation for HARDI images of rat spinal cords – which show distinct regions within both the white and gray matter. It should be noted that such a fine level of parcellation of the gray and white matter cannot be obtained either from contrast MRI scans or Diffusion Tensor MRI scans. We validate the segmentation algorithm by applying it to synthetic data sets where the ground truth is known.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملComputational Representation of White Matter Fiber Orientations
We present a new methodology based on directional data clustering to represent white matter fiber orientations in magnetic resonance analyses for high angular resolution diffusion imaging. A probabilistic methodology is proposed for estimating intravoxel principal fiber directions, based on clustering directional data arising from orientation distribution function (ODF) profiles. ODF reconstruc...
متن کاملHyperspherical von Mises-Fisher Mixture (HvMF) Modelling of High Angular Resolution Diffusion MRI
A mapping of unit vectors onto a 5D hypersphere is used to model and partition ODFs from HARDI data. This mapping has a number of useful and interesting properties and we make a link to interpretation of the second order spherical harmonic decompositions of HARDI data. The paper presents the working theory and experiments of using a von Mises-Fisher mixture model for directional samples. The ML...
متن کاملmovMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions
Finite mixtures of von Mises-Fisher distributions allow to apply model-based clustering methods to data which is of standardized length, i.e., all data points lie on the unit sphere. The R package movMF contains functionality to draw samples from finite mixtures of von Mises-Fisher distributions and to fit these models using the expectation-maximization algorithm for maximum likelihood estimati...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کامل